skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Daniel, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background: Vascular cell adhesion molecule-1 (VCAM-1+) endothelial cell-derived extracellular vesicles (EC-EVs) are augmented in cardiovascular disease, where they can signal the deployment of immune cells from the splenic reserve. Endothelial cells in culture activated with pro-inflammatory tumor necrosis factor-α (TNF-a) also release VCAM-1+ EC-EVs. However, isolating VCAM-1+ EC-EVs from conditioned cell culture media for subsequent in-depth analysis remains challenging. Aim: We utilized the extracellular vesicles (EV) microfluidics herringbone chip (EVHB-Chip), coated with anti-VCAM-1 antibodies, for selective capture of VCAM-1+ cells and EC-EVs. Methods and Results: Engineered EA.hy926 endothelial cells overexpressing VCAM-1 (P < 0.001 versus control) showed increased binding to the VCAM-1- EVHB-Chip versus an IgG device. TNF-α-stimulated human umbilical cord vein endothelial cells (HUVECs) exhibited elevated VCAM-1 protein levels (P < 0.001) and preferential binding to the VCAM-1- EVHB-Chip versus the IgG device. HUVECs stimulated with TNF-α showed differential gene expression of intercellular adhesion molecule-1 (ICAM-1) (P < 0.001) and VCAM-1 (P < 0.001) by digital droplet PCR versus control cells. HUVEC-derived EC-EVs were positive for CD9, CD63, HSP70, and ALIX and had a modal size of 83.5 nm. Control and TNF-α-stimulated HUVEC-derived EC-EV cultures were captured on the VCAM-1- EVHB-Chip, demonstrating selective capture. VCAM-1+ EC-EV were significantly enriched for ICAM-1 (P < 0.001) mRNA transcripts. Conclusion: This study presents a novel approach using the EVHB-Chip, coated with anti-VCAM-1 antibodies and digital droplet PCR for the study of VCAM-1+ EC-EVs. Isolation of VCAM-1+ EC-EV from heterogeneous sources such as conditioned cell culture media holds promise for subsequent detailed characterization, and may facilitate the study of VCAM-1+ EC-EVs in cardiovascular and metabolic diseases, for disease monitoring and therapeutic insights. 
    more » « less
  2. The input impedance of recently-introduced digital impedance circuits has been discovered to be dependent on the impedance of the external signal source. To address this problem, the theory for the dependence of digital impedance on external source resistance is presented. These digital impedance circuits provide an important digitally-controlled digitally-tunable alternative approach to difficult design problems, such as design of negative capacitances for stable wideband non-Foster antennas and metamaterials. Unfortunately, undesired source-dependent variation of the digital impedance can arise in scenarios where off-the-shelf high-speed analog-to-digital and digital-to-analog converters commonly have 50 ohm impedance. Further complicating matters, the sensitivity of digital impedance on source resistance appears to also depend on other design parameters of the digital circuit. Therefore, theory and simulation results are presented to show the dependence of digital impedance on the external source resistance. Lastly, measured results for a prototype of a digital non-Foster negative capacitance confirm the theoretical results. 
    more » « less
  3. It is proposed that gravitational meta-atom unit cells with gravitomagnetic moments could exhibit gravitomagnetic permeability, analogous to the magnetic permeability of materials comprised of atoms with magnetic moments. Recently, a gravitoelectromagnetic (GEM) framework was proposed to explore the possibility of a Veselago-inspired approach to gravitational metamaterials. The prospect of gravitational metamaterials motivates the consideration of candidate gravitational unit cells or gravitational meta-atoms. Although mass serves as a monopole source of a gravitoelectric field similar to positive charge, negative mass would be needed to create a gravitational analog of an electric dipole. However, moving mass is analogous to electric current, and can lead to a gravitomagnetic dipole moment analogous to magnetic dipole moments of magnetic materials and atoms. In this paper, GEM field approximations to general relativity are used to find the gravitomagnetic dipole moment of different rotating systems, ranging in scale from meters to astronomical size. 
    more » « less